If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-30t=0
a = 2; b = -30; c = 0;
Δ = b2-4ac
Δ = -302-4·2·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-30}{2*2}=\frac{0}{4} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+30}{2*2}=\frac{60}{4} =15 $
| 7^x=4,2 | | 3(x-(-3))=3 | | x^2-3/2x+3/8=11/8 | | -(3x+4)+x=2x-5 | | -4x^2+7x-11=0 | | F(x)=-2.3 | | 6-6(5-3x)=0 | | -6x+40=10-12 | | 2-7(6x+5)=9 | | 2x2-x-1/x2-1=5/2 | | 3x+5+1=12+15 | | 9x+98=2x-7 | | 3x+53=12x-7-3x | | 2x+21=10x | | 10x−25=5(2x−5) | | -7x+4x+8=17 | | 4p+0.1=2.24 | | -x+42=-9x-6 | | 20x-(180+8x)=0 | | t(8–3)=2•8–2•3 | | 8x-5x=6x-1 | | 8n-13=56 | | (500-2x)(400-2x)=100000 | | 0=279+72y-9y^2 | | -40-7m=m-8(5m+1) | | 19x+5=180 | | 4n-1=78 | | 6(-3-x)=-5(2x+4) | | z/2=24 | | (500-2x)-(400-2x)=100000 | | 15^2=x(x+40) | | 3x+4+30=180 |